# The role of active MRSA screening: what's the evidence ?

### **Stephan Harbarth MD, MS**



# Agenda

Recently published studies: Effect of (universal) active screening?

Cost-effectiveness of rapid screening?

#### Universal Screening for Methicillin-Resistant Staphylococcus aureus at Hospital Admission and Nosocomial Infection in Surgical Patients

### **MRSA** screening

| Stephan Harbarth, MD, MS     | Context Exper                                           |  |
|------------------------------|---------------------------------------------------------|--|
| Carolina Fankhauser, MS      | hospital admissi                                        |  |
| Jacques Schrenzel, MD        | (MRSA) infectio                                         |  |
| Jan Christenson, MD          | Objective To<br>mial MRSA infe                          |  |
| Pascal Gervaz, MD            | <ul> <li>Design, Settir</li> </ul>                      |  |
| Catherine Bandiera-Clere, RN | between July 20                                         |  |
| Gesuele Benzi, MS            | hospital using a<br>on admission plu<br>Twelve surgical |  |
| Nathalie Vernaz, PharmD      |                                                         |  |
| Hugo Sax, MD                 | prespecified age                                        |  |
| Didier Pittet, MD, MS        | period, then swi                                        |  |

text Experts and policy makers have repeatedly called for universal screening at Ital admission to reduce nosocomial methicillin-resistant Staphylococcus aureus SA) infectio

#### Impact of rapid screening tests on acquisition of meticillin resistant Staphylococcus aureus: cluster randomised crossover trial pecified age

Dakshika Jeyaratnam, research fellow, <sup>1,2</sup> Christopher J M Whitty, professor, <sup>3</sup> Katie Phillips, medical laboratory assistant,<sup>1</sup> Dongmei Liu, medical statistician,<sup>3</sup> Christina Orezzi, information analyst,<sup>1</sup> Annals of Internal M Uchechukwu Ajoku, research assistant,<sup>1</sup> Gary L French, professor of microbiology<sup>1,2</sup>

#### Universal Surveillance for Methicillin-Resistant Staphylococcus aureus in 3 Affiliated Hospitals

Ari Robicsek, MD; Jennif Karen L. Kaul, MD, PhD;

Reduction in the rate of methicillin-resistant Staphylococcus aureus acquisition in surgical wards by rapid screening for colonization: a prospective, cross-over study

#### **Original article**

#### Impact of ra Staphylococ

M. R. S. Keshtgar<sup>1</sup> D. Baker<sup>2</sup>, M. Wre Katherine Hardy<sup>1,2</sup>, Charlotte Price<sup>3</sup>, Ala Szczepura<sup>3</sup>, Savita Gossain<sup>1</sup>, Ruth Davies<sup>4</sup>, Nigel Stallard<sup>3</sup>, Sahida Shabir<sup>5</sup>, Claire McMurray<sup>5</sup>, Andrew Bradbury<sup>6</sup> and Peter M Hawkey<sup>1,2</sup>

1) West Midlands Public Health Laboratory, Heart of England NHS Foundation Trust, 2) School of Immunity and Infection, University of Birmingham, Birmingham, 3) Warwick Medical School, University of Warwick, Coventry, 4) Warwick Business School, University of Warwick, Coventry, 5) Research & Development, Heart of England NHS Foundation Trust, and 6) Department of Vascular Surgery, Heart of England NHS Foundation Trust, Birmingham, UK

<sup>1</sup>Department of Surgery and <sup>2</sup>Department of Microbiology, Windever Institute of Medical Sciences, University College London Hospitals Foundation Trust, London, UK Correspondence to: Mr M. R. S. Keshtgar, Department of Surgery, Roval Free Hospital, Pond Street, London NW3 2OG, UK (e-mail: m.keshtgar@ucl.ac.uk)

### Universal Screening for Methicillin-Resistant Staphylococcus aureus at Hospital Admission and Nosocomial Infection in Surgical Patients

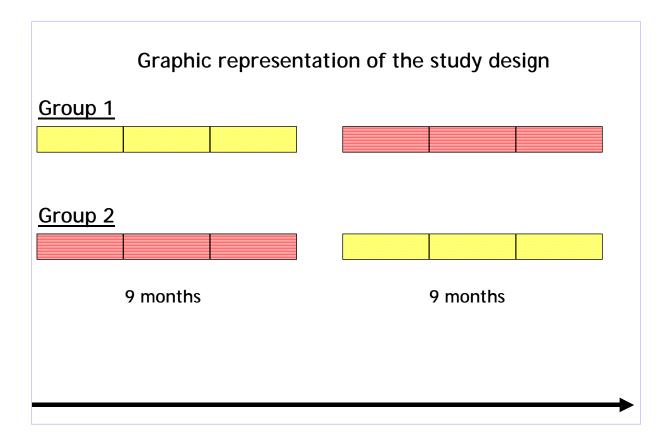
Stephan Harbarth, MD, MS Carolina Fankhauser, MS Jacques Schrenzel, MD Jan Christenson, MD Pascal Gervaz, MD Catherine Bandiera-Clerc, RN Gesuele Renzi, MS Nathalie Vernaz, PharmD Hugo Sax, MD Didier Pittet, MD, MS

**Context** Experts and policy makers have repeatedly called for universal screening at hospital admission to reduce nosocomial methicillin-resistant *Staphylococcus aureus* (MRSA) infection.

**Objective** To determine the effect of an early MRSA detection strategy on nosocomial MRSA infection rates in surgical patients.

**Design, Setting, and Patients** Prospective, interventional cohort study conducted between July 2004 and May 2006 among 21754 surgical patients at a Swiss teaching hospital using a crossover design to compare 2 MRSA control strategies (rapid screening on admission plus standard infection control measures vs standard infection control alone). Twelve surgical wards including different surgical specialties were enrolled according to a prespecified agenda, assigned to either the control or intervention group for a 9-month period, then switched over to the other group for a further 9 months.

### JAMA 2008 Mar 12;299(10):1149-57


### **Objective**

To determine the effect of a universal rapid MRSA detection strategy on nosocomial MRSA infection rates in a large surgical department with endemic MRSA

### **Methods**

Prospective, interventional cohort study with crossover design (July 04 – June 06)

- Two study groups with 6 surgical wards each and a total of 12,000 annual admissions were enrolled
  - 1. Group I orthopedics, neurosurgical, plastic, cardiovascular & thoracic surgery
  - 2. Group II urology, abdominal & transplant surgery



#### Group 1:

Orthopedics Cardiovascular and Thoracic surgery Neurosurgery & Plastic surgery

#### Group 2:

Abdominal surgery Urology Transplant surgery

### **Results (I): MRSA infections**

|                | qMRSA<br>period | Control |
|----------------|-----------------|---------|
| Orthopedics    | 27              | 17      |
| Cardiovascular | 6               | 8       |
| Neurosurgery   | 2               | 2       |
| Abdominal      | 38              | 32      |
| Urology        | 12              | 13      |
| Others         | 8               | 4       |
| TOTAL          | 93              | 76      |

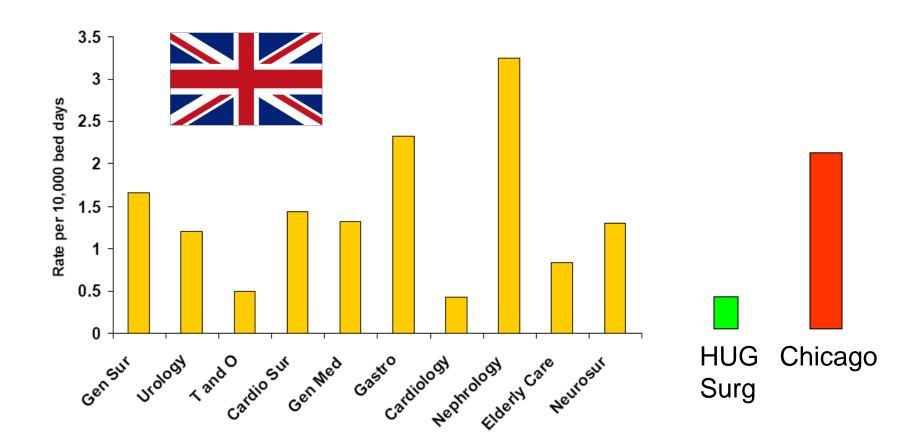
Harbarth et al. JAMA 2008;299:1149-57

### **Results (II): Incidence of MRSA infections**

|                                                                                                        | qMRSA                    | Control                  | Adjusted<br>RR   |
|--------------------------------------------------------------------------------------------------------|--------------------------|--------------------------|------------------|
| Incidence of MRSA NI<br>(per 1000 pt-days)                                                             | 1.11                     | 0.91                     | 1.2<br>(0.9-1.7) |
| Sites of MRSA infection<br>Surgical site<br>Urinary tract<br>Respiratory tract<br>Bacteremia<br>Others | 70<br>14<br>2<br>4<br>13 | 60<br>10<br>6<br>2<br>10 |                  |
| Rate of MRSA SSI<br>(per 100 procedures)                                                               | 1.14                     | 0.99                     | 1.2<br>(0.8-1.7) |

Harbarth et al. JAMA 2008;299:1149-57

# Results (III): MRSA infections in the rapid screening arm


| Variable                                                                         | Total n |
|----------------------------------------------------------------------------------|---------|
| Among patients with any type of MRSA-<br>infection:                              | 93      |
| Newly identified MRSA carriers by<br>admission screening                         | 17      |
| Previously known MRSA carriers                                                   | 23      |
| MRSA-free at admission and identified by clinical isolate during hospitalization | 53      |

Harbarth et al. JAMA 2008;299:1149-57

### Limitations

- The majority of MRSA-infections occurred in patients negative on admission
  - Postoperative contamination important
  - Consider weekly screening in the future
- Not all MRSA patients received vancomycin ABP
  - Emergency surgery
  - Reluctance of surgeons
- No preemptive isolation used
- Good hand hygiene compliance
- Relatively low MRSA infection rates

#### **MRSA** bacteremia rates



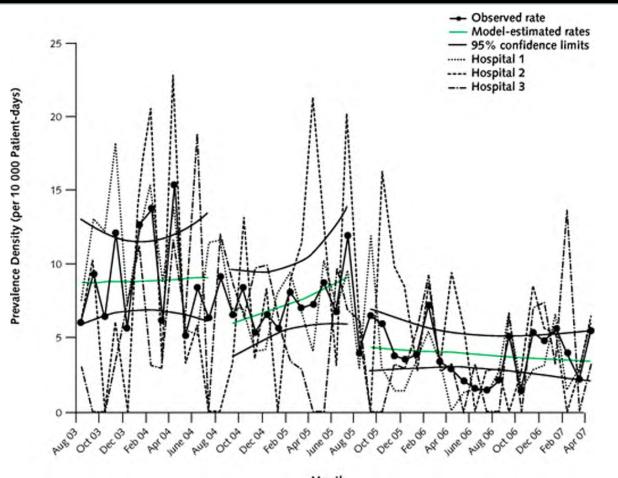


### Robicsek et al. Ann Intern Med 2008

#### **Annals of Internal Medicine**

Article

#### Universal Surveillance for Methicillin-Resistant *Staphylococcus aureus* in 3 Affiliated Hospitals


Ari Robicsek, MD; Jennifer L. Beaumont, MS; Suzanne M. Paule, BS; Donna M. Hacek, BS; Richard B. Thomson Jr., PhD; Karen L. Kaul, MD, PhD; Peggy King, RN, MBA; and Lance R. Peterson, MD

# **Design & intervention**

- To examine the effect of 2 expanded surveillance interventions on MRSA disease in 3 hospitals in Chicago
- PCR-based nasal MRSA surveillance followed by topical decolonization therapy and contact isolation of MRSA-positive patients
- Interrupted time-series analysis

#### Segmented Poisson regression model: Aggregate hospital-associated MRSA prevalence density

#### Compared to baseline (8.9): •MRSA decreased during ICU surveillance (7.4, p=0.15) •MRSA significantly decreased during universal surveillance (3.9, p<.001)





### Potential drawbacks of this study

- Key component of 2<sup>nd</sup> period: decolonization (mupirocin & chlorhexidine)
- Increase in mupirocin resistance
  - 6-9% of high-level mupirocin-resistant isolates

Robiscek A et al. Infect Control Hosp Epi 2009; in press.

# Potential drawbacks of this study

- Key component of 2<sup>nd</sup> period: decolonization (mupirocin & chlorhexidine)
- Increase in mupirocin resistance
- Dramatic increase in the use of contact isolation ⇒ adverse outcomes?

# Potential drawbacks of this study

- Key component of 2<sup>nd</sup> period: decolonization (mupirocin & chlorhexidine)
- Increase in mupirocin resistance
- Dramatic increase in the use of contact isolation ⇒ adverse outcomes?
- Unchanged rate of other nosocomial infections

Limitations of both studies JAMA vs. Ann Intern Med

- No conventional cultures to confirm positive results of the molecular tests
- Lack of active post-discharge surveillance of MRSA surgical site infections
- No random assignment of individual wards to the study arms
- No discharge screening for MRSA



### Dakshika Jeyaratnam et al. BMJ 2008

# Impact of rapid screening tests on acquisition of meticillin resistant *Staphylococcus aureus*: cluster randomised crossover trial

Dakshika Jeyaratnam, research fellow,<sup>1,2</sup> Christopher J M Whitty, professor ,<sup>3</sup> Katie Phillips, medical laboratory assistant,<sup>1</sup> Dongmei Liu, medical statistician,<sup>3</sup> Christina Orezzi, information analyst,<sup>1</sup> Uchechukwu Ajoku, research assistant,<sup>1</sup> Gary L French, professor of microbiology<sup>1,2</sup>

# Methods

- Objective: To compare rapid MRSA screening vs. conventional cultures
- Design: Cluster-randomized clinical trial in 10 wards
- Admission & <u>discharge</u> screening
- Main outcome: acquisition rates

# Results

- 6'888 included patients (72%)
- MRSA carriage on admission: 6.7%

|                                    | Control | Intervention |
|------------------------------------|---------|--------------|
| Reporting (h)                      | 46      | 22           |
| Inadequate premptive isolation (d) | 399     | 277          |
| MRSA acquisition                   | 108     | 99           |

→ Rates of MRSA transmission, wound infection, and bacteraemia not statistically different

#### Reduction in the rate of methicillin-resistant Staphylococcus aureus acquisition in surgical wards by rapid screening for colonization: a prospective, cross-over study

Katherine Hardy<sup>1,2</sup>, Charlotte Price<sup>3</sup>, Ala Szczepura<sup>3</sup>, Savita Gossain<sup>1</sup>, Ruth Davies<sup>4</sup>, Nigel Stallard<sup>3</sup>, Sahida Shabir<sup>5</sup>, Claire McMurray<sup>5</sup>, Andrew Bradbury<sup>6</sup> and Peter M Hawkey<sup>1,2</sup>

1) West Midlands Public Health Laboratory, Heart of England NHS Foundation Trust, 2) School of Immunity and Infection, University of Birmingham, Birmingham, 3) Warwick Medical School, University of Warwick, Coventry, 4) Warwick Business School, University of Warwick, Coventry, 5) Research & Development, Heart of England NHS Foundation Trust, and 6) Department of Vascular Surgery, Heart of England NHS Foundation Trust, Birmingham, UK

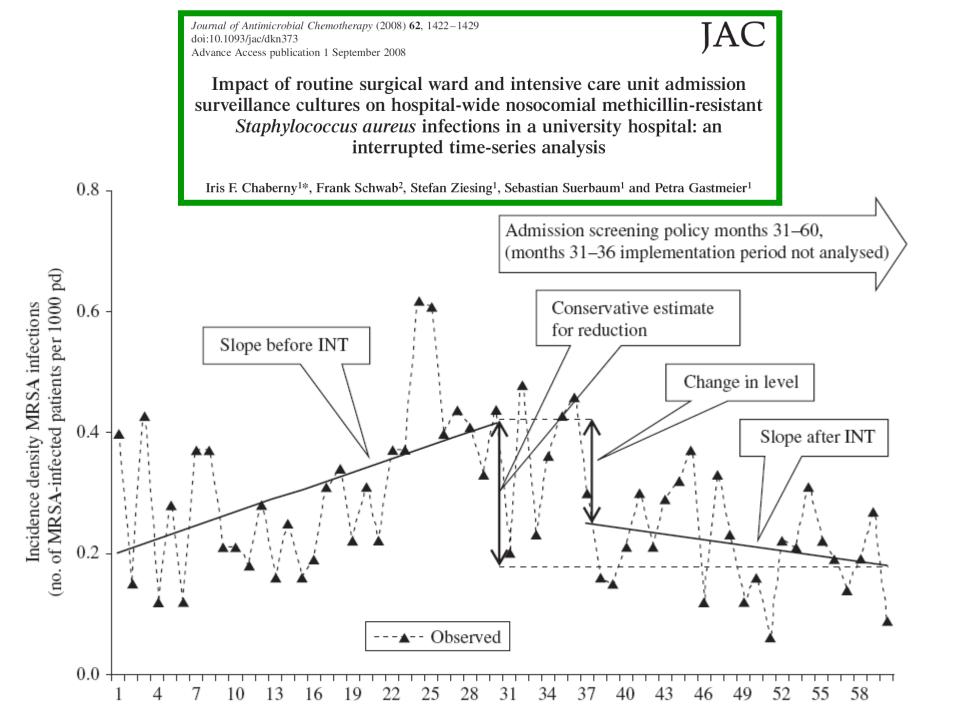
### Design:

- Cluster-randomized cross-over study
- 8 months intervention phase then crossover
- Endpoint: MRSA transmission & acquisition
- Screening of all patients on discharge
- Industry co-sponsoring

### **MRSA-Screening: Another UK trial**

#### Intervention:

- PCR-based on-admission screening for MRSA vs. conventional screening
- Repeat screening in 4 days intervals
- Decolonisation: Mupirocin & chlorhexidin for 5 days


#### **Study population**:

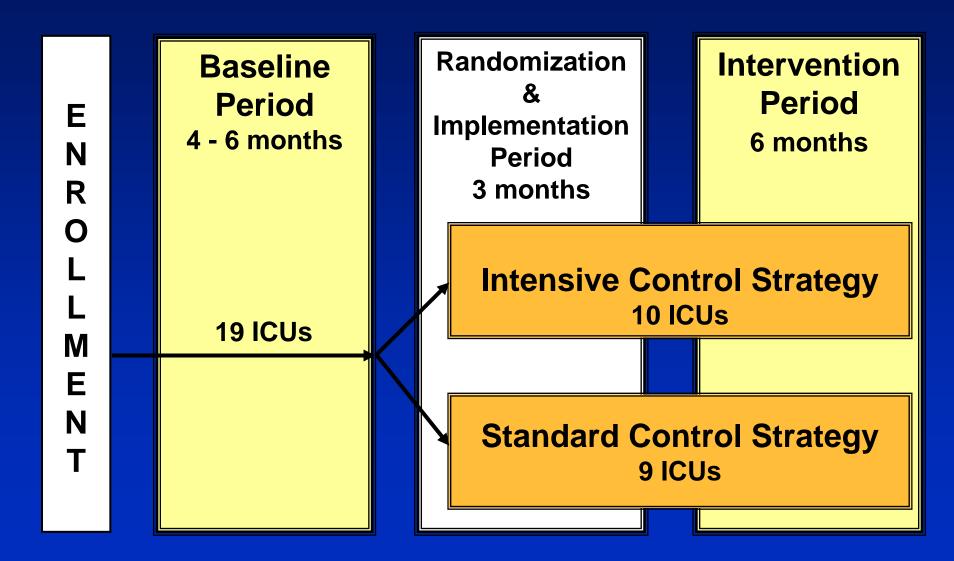
- 10.934 surgical patients in 7 services
- Screening compliance: 90.8%

# **Results: MRSA-Screening**

|                          | Standard arm | PCR arm |
|--------------------------|--------------|---------|
| Patient episodes         | 7493         | 6459    |
| MRSA+ on admission       | 187          | 266     |
| Time to notification (d) | 3.3          | 0.9     |
| Nosocomial MRSA+         | 157          | 111     |
| Decolonisation           | 142          | 268     |

After adjustment for confounding, MRSA transmission rates were 1.5 times higher in the standard screening arm (compared to PCR)
Only 17% of MRSA-patients underwent contact precautions



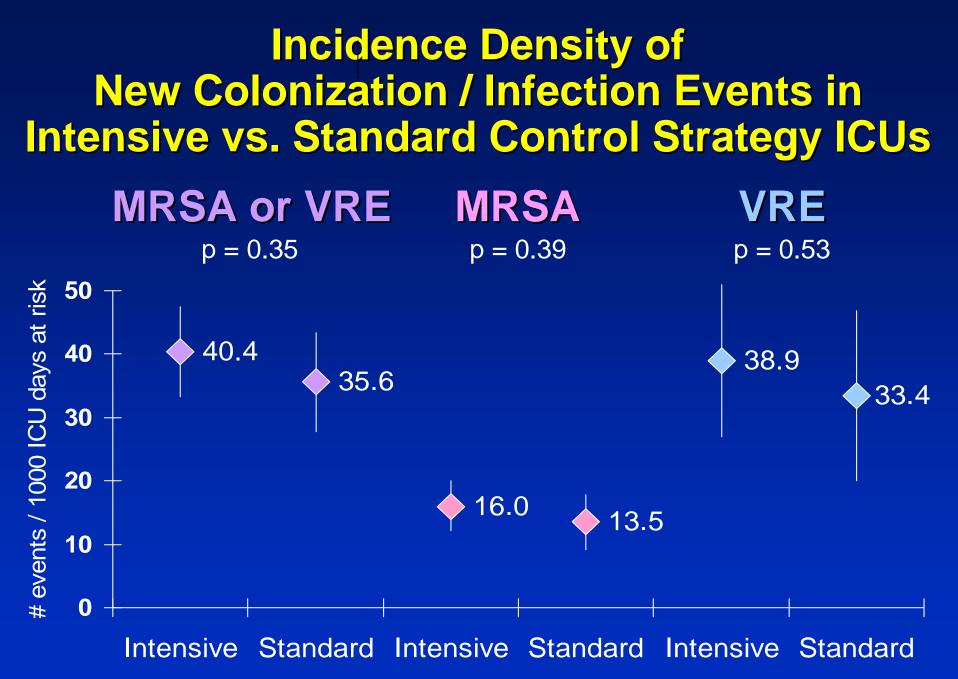

### **Results of the STAR\*ICU Trial**

Strategies to Reduce Transmission of Antimicrobial Resistant Bacteria in Adult Intensive Care Units

W. Charles Huskins, MD, MSc Mayo Clinic College of Medicine, Rochester, MN

conducted by the Bacteriology and Mycology Study Group (BAMSG) 19 US academic medical centers

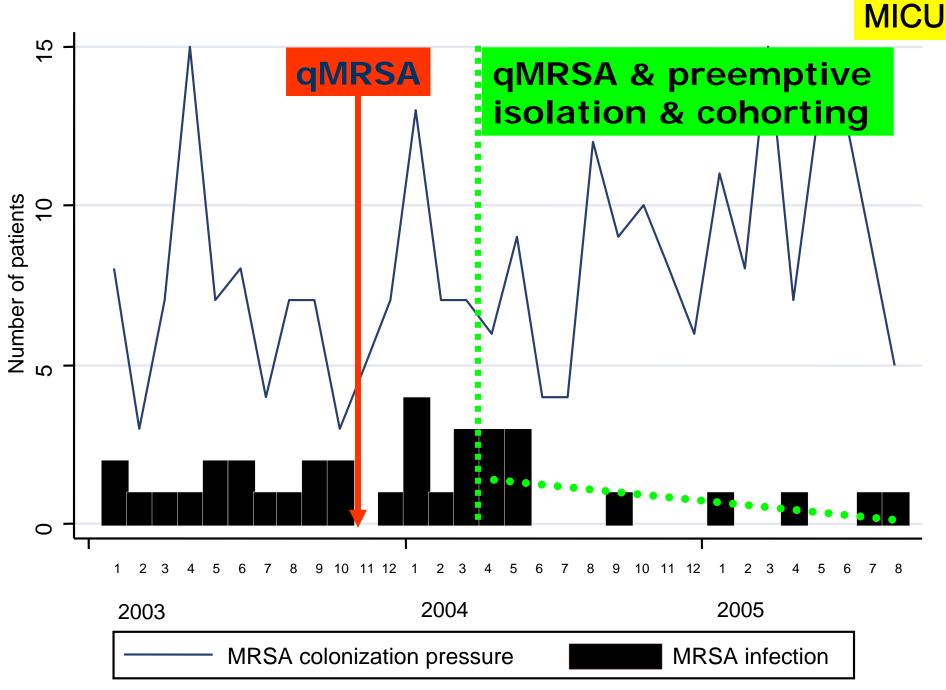
# **Study Design**




### **Infection Control Strategies**

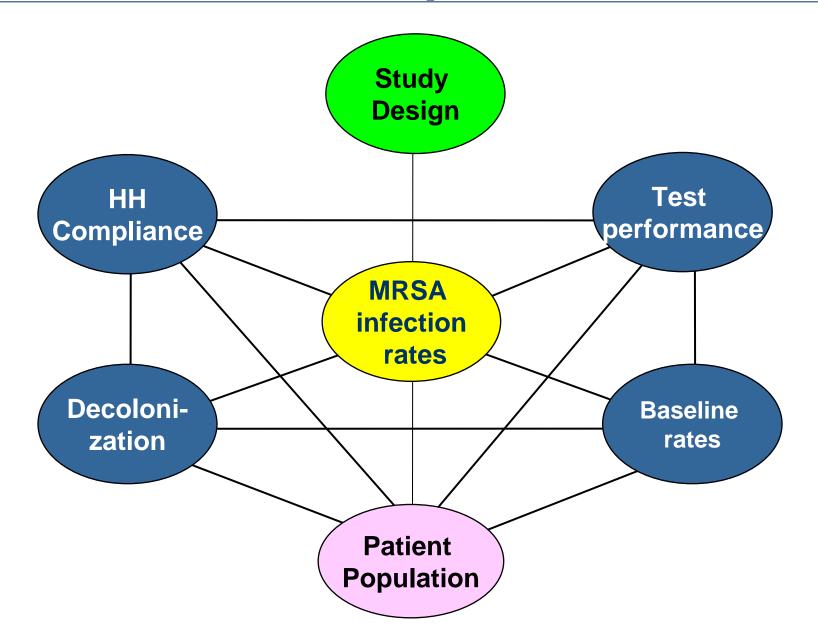
|                                                 | Intensive                        | Standard          |
|-------------------------------------------------|----------------------------------|-------------------|
| Hand hygiene / SP promotion<br>program          | Yes                              | Yes               |
| Surveillance cultures for MRSA & VRE            |                                  |                   |
| ICU admission (day 0 - 2)                       | Yes                              | Yes               |
| Weekly while in ICU                             | Yes                              | Yes               |
| Discharge (+ / - 2 days)                        | Yes                              | Yes               |
| Report surveillance culture results             | Yes                              | No                |
| Barrier precautions for MRSA / VRE              |                                  |                   |
| ICU admission (cultures pending)                | UG                               | SP                |
| MRSA & VRE negative                             | SP                               | SP                |
| SP = NSREGALand VPREconstitutive; UG = Universa | I Glovi <mark>ng</mark> ; CP = @ | Deistaot Preceduo |

AS


C



Point estimates, 95% CI & p-values from ANCOVA adjusted for baseline ID


### **Possible reasons for failure**

- High rates of acquisition in both arms
- No intensive search & <u>destroy</u>
  - No uniform decontamination approach
  - No environmental control
  - No HCW screening
- Central laboratory facility
  - No rapid testing available



Harbarth et al, Crit Care 2006

### **Possible explanations**



# **Active MRSA screening:**

Cost-effectiveness of rapid PCR tests?

### **Economic evaluation: Challenges**

- It is not clear from the current literature if, when, for whom rapid MRSA screening is cost-effective
- Common limitations of existing studies:
- No explicit goal or decision choice
- No clear perspective (Hospital? Society?)
- Poor costing methods
- Limited clinical & economic data available

### Complications with Economic Analyses of MRSA Screening

### Limited availability of cost data

"What does an MRSA infection cost?"

- Attributing costs to MRSA is not easy
- Controlling for confounders difficult to achieve
- Endogeneity bias\* (correlation between infection risk and LoS)
- Overestimation of direct MRSA costs
- Underestimation of indirect MRSA costs

#### What about cost-effectiveness? UK HTA of MRSA screening

- Economic model of MRSA screening
- Compared rapid PCR vs. culture vs. chromogenic agar
- Compared universal vs. targeted screening

#### Effectiveness?

- Universal screening with pre-emptive isolation most effective at reducing MRSA prevalence
- Ignoring pre-emptive isolation only marginally less effective
- Targeted screening (high-risk wards) was least effective

#### Which test?

- Chromogenic agar was most effective given high sensitivity and specificity and low turn-around time
- ChromAgar the most cost-effective Dominates PCR

# HTA of MRSA screening Key drivers of cost-effectiveness

#### Economic analysis sensitive to:

- Baseline prevalence of MRSA (7.1% estimate)
- MRSA transmission rate
- Hospital factors: availability of isolation rooms, LoS

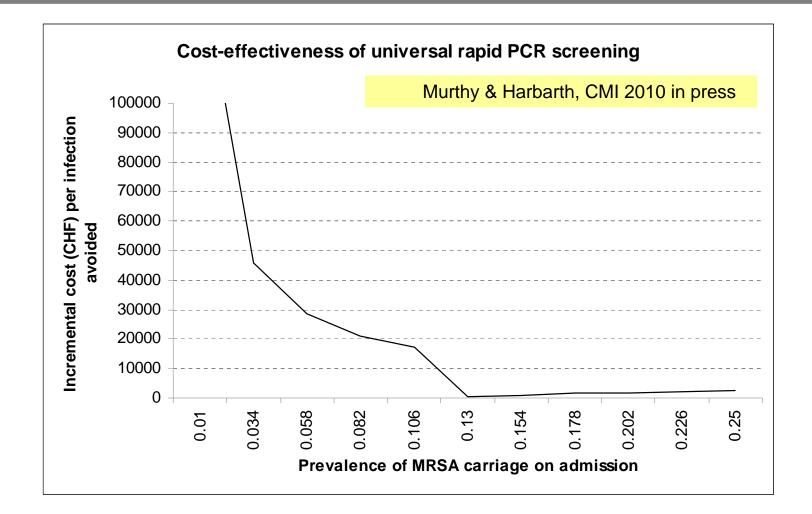
#### Significant uncertainty & limited generalizability

- Variable sensitivity and specificity of MRSA tests
- Impact of other MRSA containment policies
- Major limitation: Performed prior to publication of recent high-quality studies of MRSA screening

Ritchie K et al. HTA report 9. NHS Quality Improvement Scotland, 2007 (www.nhshealthquality.org)

### Rapid PCR *Economic assessments*

- Significant reduction of TaT time by PCR
- Yet at a higher cost (false positives)
- Cost per patient higher with PCR


Conterno LO et al. ICHE 2007; 28: 1134-41

PCR valuable for rapid MRSA detection but high costs suggest prudent use
 In settings with low MRSA endemicity, the broad use of PCR is *not cost-effective*.

Bühlmann M et al. J Clin Micro 2008; 46: 2151-54 Wassenberg M et al. ECCMID 2009

#### **Cost-effectiveness**

Baseline prevalence is an important predictor of cost-effectiveness: PCR may be more appropriate in settings with high MRSA prevalence



# **MRSA** screening

- Universal screening not a mandatory prerequisite to reduce MRSA infections
- Use of <u>targeted screening</u> is probably cost-effective if linked to rapid action
- Conflicting recent evidence about value of rapid screening
- <u>Risk profiling</u> needs to be adapted to local epidemiology (C-MRSA)
- Competing infection control strategies need to be evaluated

# SHEA/IDSA Practice Recommendations Oct 2008

S62 INFECTION CONTROL AND HOSPITAL EPIDEMIOLOGY OCTOBER 2008, VOL. 29, SUPPLEMENT 1

SUPPLEMENT ARTICLE: SHEA/IDSA PRACTICE RECOMMENDATION

#### Strategies to Prevent Transmission of Methicillin-Resistant Staphylococcus aureus in Acute Care Hospitals

David P. Calfee, MD, MS; Cassandra D. Salgado, MD, MS; David Classen, MD, MS; Kathleen M. Arias, MS, CIC; Kelly Podgorny, RN, MS, CPHQ; Deverick J. Anderson, MD, MPH; Helen Burstin, MD; Susan E. Coffin, MD, MPH; Erik R. Dubberke, MD; Victoria Fraser, MD; Dale N. Gerding, MD; Frances A. Griffin, RRT, MPA; Peter Gross, MD; Keith S. Kaye, MD; Michael Klompas, MD; Evelyn Lo, MD; Jonas Marschall, MD; Leonard A. Mermel, DO, ScM; Lindsay Nicolle, MD; David A. Pegues, MD; Trish M. Perl, MD; Sanjay Saint, MD; Robert A. Weinstein, MD; Robert Wise, MD; Deborah S. Yokoe, MD, MPH

# SHEA/IDSA Practice Recommendations

- Specific recommendation regarding universal screening for MRSA <u>cannot</u> be made
  - Conflicting results from recent studies
  - Differences among hospitals and patient populations

# SHEA/IDSA Practice Recommendations

- Active surveillance as a <u>single intervention</u> in the absence of a multifaceted approach to MRSA control <u>unlikely</u> to be effective
- Active surveillance <u>potentially useful</u> in facilities with optimized adherence to basic MRSA control but still high MRSA rates

### RESERVE

#### Rapid screening tests for meticillin-resistant Staphylococcus aureus at hospital admission: systematic review and meta-analysis

Evelina Tacconelli, Giulia De Angelis, Chiara de Waure, Maria A Cataldo, Giuseppe La Torre, Roberto Cauda

Compared with culture screening, use of rapid screening tests was not associated with a significant decrease in MRSA acquisition rate (RR 0.87, 95% CI 0.61–1.24).

Tacconelli E et al. Lancet Infect Dis 2009; 9: 546-54

### Rapid testing & MRSA SSI-rate

|                                        | Weight (%) | RR (95% CI)      |                                       |     |            |    |
|----------------------------------------|------------|------------------|---------------------------------------|-----|------------|----|
| Jog (2008) <sup>18</sup>               | 5.53%      | 0.26 (0.05-1.20) |                                       |     |            |    |
| Harbarth (2008) <sup>19</sup>          | 28.64%     | 1.20 (0.80-1.70) |                                       |     |            |    |
| Robicsek (2008) <sup>20</sup>          | 27.53%     | 0.58 (0.38-0.86) |                                       |     | -          |    |
| Keshtgar (2007) <sup>21</sup>          | 36.70%     | 0.61 (0.52-0.71) |                                       |     | -          |    |
| Richer (2009) <sup>26</sup>            | 1.61%      | 0.27 (0.01-5.57) | -                                     |     | 1          | -  |
| Overall                                |            | 0.69 (0.46-1.01) |                                       |     | $\diamond$ |    |
| Heterogeneity: $\chi^2 = 12.8$ , df=4; |            |                  |                                       |     |            |    |
| l <sup>2</sup> =68·9%, p=0·012         |            |                  | r r r r r r r r r r r r r r r r r r r |     | mm         |    |
|                                        |            |                  | 0.01                                  | 0.1 | 1          | 10 |
|                                        |            |                  | Risk ratio                            |     |            |    |

Figure 4: Effect of rapid molecular tests for meticillin-resistant Staphylococcus aureus (MRSA) at hospital admission on the incidence of MRSA surgical-site infections per 100 surgical procedures

#### Almost significant decrease in MRSA SSI infections !

meta-analysis.

Tacconelli E et al. Lancet Infect Dis 2009; 9: 546-54

| Author, Journal,<br>Year         | Harbarth,<br>JAMA 2008                                                            | Robicsek,<br>Annals 2008                                                | Jeyaratnam,<br>BMJ 2008                                         | Hardy, Clin Micro<br>Infect 09                                  |  |
|----------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|--|
| Aim                              | Evaluate the<br>efficacy of<br>universal rapid<br>MRSA screening                  | Examine the effect<br>of screening &<br>decolonization on<br>MRSA rates | Compare rapid<br>MRSA screening<br>vs. conventional<br>cultures | Compare rapid<br>MRSA screening<br>vs. conventional<br>cultures |  |
| Country                          | Switzerland                                                                       | USA                                                                     | UK                                                              | UK                                                              |  |
| Setting                          | Surgery                                                                           | Hospital-wide                                                           | Geriatrics,<br>oncology, surgery                                | Surgery                                                         |  |
| Design                           | Cross-over                                                                        | Before-after                                                            | Cross-over                                                      | Cross-over                                                      |  |
| Control group                    | Yes                                                                               | No                                                                      | Yes                                                             | Yes                                                             |  |
| Rapid test                       | Yes (homemade)                                                                    | Yes (commercial)                                                        | Yes (commercial)                                                | Yes (commercial)                                                |  |
| Decolonization                   | Yes                                                                               | Partial                                                                 | Yes                                                             | Yes                                                             |  |
| Total study period               | 24 months                                                                         | 45 months                                                               | 14 months                                                       | 16 months                                                       |  |
| Admission MRSA<br>prevalence     | 5.1%                                                                              | 6.3%                                                                    | 6.7%                                                            | 3.6%                                                            |  |
| Baseline MRSA<br>infection rates | Medium                                                                            | High                                                                    | High                                                            | Unknown                                                         |  |
| Hand hygiene compliance          | Excellent                                                                         | Unknown                                                                 | Good                                                            | Unknown                                                         |  |
| Conclusion                       | Rapid MRSA<br>screening did <u>not</u><br>reduce<br>nosocomial<br>MRSA infections | Universal<br>admission<br>screening reduced<br>MRSA disease             | Universal rapid<br>MRSA screening is<br><u>not</u> recommended  | Universal rapid<br>MRSA screening is<br>recommended             |  |